ROBUSTIGENIN, A NEW ISOFLAVONE FROM DERRIS ROBUSTA SEED SHELLS

S. S. CHIBBER and R. P. SHARMA

Department of Chemistry, University of Delhi, Delhi-110007, India

(Revised received 16 November 1978)

Key Word Index—*Derris robusta*; Leguminosae; robustigenin; 5-hydroxy-7.2′,4′,5′-tetramethoxyisoflayone.

Though *Derris robusta* [1-3] has yielded many compounds with coumarin and isoflavone skeletons, no work has been reported on its seed shells. We now report the isolation of a new isoflavone robustigenin from the benzene extract of the pods (from which seeds had been removed) of *D. robusta*.

It analysed for $C_{19}H_{18}O_7(M^+, 358)$. That robustigenin is an isoflavone containing a chelated hydroxyl was shown by absorptions at 3450 and 1661 cm⁻¹ in IR, $\lambda_{\text{max}}^{\text{MeOH}}$ 260 nm in UV and δ 13.30 (chelated hydroxyl) and 7.87 (H-2 of the isoflavones) in NMR. The location of a chelated hydroxyl at the 5-position is shown by a bathochromic shift of 10 nm with AlCl, in UV. Absence of a shift [4] with NaOAc in the UV spectrum indicated the absence of a free hydroxyl at the 7-position, NMR showed three singlets at δ 3.91, 3.85 and 3.76 corresponding to 3, 6 and 3 protons, respectively, due to four methoxyls. The compound gave a positive Gibb's test and a twoproton singlet at δ 6.37 corresponding to H-6 and H-8, thus placing one methoxyl at the 7-position and the remaining three methoxyls in the B-ring. This was confirmed by peaks at m/e 167 and 191 arising from retro-Diels-Alder fission of the heterocyclic ring. The presence of M-31 peak [5, 6] in high abundance in the MS indicates a 2'-methoxyl in robustigenin. Sharp singlets at δ 6.88 and 6.60, integrating for one proton each, were attributed to 6',3'-protons, respectively. Thus robustigenin has 2',4',5'-substitution pattern in the side phenyl ring, which was confirmed by its oxidation with alkaline permanganate solution when 2,4,5-trimethoxybenzoic acid was obtained. The identity of the latter was confirmed by comparison with a synthetic sample [7]. The presence of only one hydroxyl is supported by the NMR of its monoacetate and monomethyl ether. Hence robustigenin is 5-hydroxy-7.2',4',5'-tetramethoxyisoflavone (1).

$$\begin{array}{c} \text{MeO} \\ \text{OR} \\ \text{O} \\ \text{OMe} \\ \end{array}$$

EXPERIMENTAL

2 R = Me

3 R = Ac

 1 H NMR spectra were taken at 60 MHz (unless otherwise stated) in CDCl₃ and chemical shifts are given in δ (ppm) scale relative to TMS; UV spectra were obtained in MeOH and IR

spectra as KBr discs.

Isolation. Air-dried and coarsely powdered seed shells (750 g) of *D. robusta* were defatted with hot petrol (bp 60–80°) and then extracted with hot C_6H_6 (4 × 500 ml). The C_6H_6 extract was concd and treated with Et₂O when a green solid separated out, which on column chromatography over Si gel using C_6H_6 —EtOAc (49:1) as eluent, gave a crystalline compound (200 mg), robustigenin (1). TLC: R_f 0.50 (C_6H_6 —EtOAc, 9:1); mp 174–5°; λ_{max}^{MeOH} nm: 260, 295 sh; +NaOAc 260, 295 sh; +AlCl₃ 270, 300; +NaOMe: 268, 295, 335. γ_{max}^{KBT} cm $^{-1}$: 3450, 1661, 1610, 1042 and 830. 1 H NMR (90 MHz, CDCl₃): δ 3.76 (s, 3H, OCH₃), 3.85 (s, 6H, 2 × OCH₃), 3.91 (s, 3H, OCH₃), 6.88 (s, 1H, ArH₆, h, 7.87 (s, 1H, H₂) and 13.30 (s, 1H, ArH₃,), 6.88 (s, 1H, ArH₆, h, 7.87 (s, 1H, H₂) and 13.30 (s, 1H, chelated hydroxyl). MS (m/e, γ_6): 358 (M $^+$, 100), 343 (M — Me, 20), 327 (M — OMe, 20), 191 (7) and 167 (17) (RDA fragments).

Robustigenin acetate. Acetylation of robustigenin (Ac₂O/Py) gave the monoacetate (3) as needles, mp 168°: $\gamma_{\text{max}}^{\text{KBe}}$ cm⁻¹: 1767, 1645, 1621, 1042, 841 and 823. ¹H NMR (CDCl₃): δ 2.38 (s, 3H, —OCOCH₃), 3.73 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.88 (s, 6H, 2 × OCH₃), 6.56 (d, J = 2.5 Hz, 1H, Ar- \underline{H}_6), 6.75 (d, J = 2.5 Hz, 1H, Ar- \underline{H}_6), 6.79 (s, 1H, Ar- \underline{H}_3), 6.83 (s, 1H, Ar- \underline{H}_6) and 7.78 (s, 1H, \underline{H}_3).

Robustigenin methyl ether. Methylation of robustigenin with $Me_2CO-K_2CO_3-Me_2SO_4$ gave the monomethyl ether (2) as needles, mp $192-3^\circ$; χ_{max}^{RBr} cm $^{-1}$: 1653, 1605, 1040, 857 and 820. 1H NMR (CDCl $_3$): δ 3.70 (s, 3H, OC $_3$), 3.81 (s, 3H, OC $_3$), 3.85 (s, 3H, OC $_3$), 3.89 (s, 6H, $2 \times OC_3$), 6.32 (d, J = 2.5 Hz, 1H, Ar- $_3$), 6.42 (d, J = 2.5 Hz, 1H, Ar- $_3$), 6.57 (s, 1H, Ar- $_3$), 6.93 (s, 1H, Ar- $_3$) and 7.75 (s, 1H, $_3$).

Oxidation of robustigenin. Oxidation of robustigenin (80 mg) with alkaline K MnO₄ at 50-60° and subsequent work-up gave a compound (10 mg), mp 144° (lit. [7] mp 144–145.5°); $\gamma_{\rm max}^{\rm KBr}$ cm⁻1: 1709, 1563, 1040, 1015 and 876: identified as 2,4,5-trimethoxybenzoic acid by direct comparison (mmp, co-TLC and co-IR) with a synthetic sample.

REFERENCES

- 1. Johnson, A. P. and Pelter, A. (1966) J. Chem. Soc. C 606.
- East, A. J., Ollis, W. D. and Wheeler, R. E. (1969) J. Chem. Soc. C 365.
- 3. Chibber, S. S. and Sharma, R. P., Unpublished results.
- Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) The Systematic Identification of Flaconoids, p. 169. Springer, Berlin.
- Ollis, W. D., Rhodes, C. A. and Sutherland, I. O. (1967) Tetrahedron 23, 4741.
- Campbell, R. V. M., Harper, S. H. and Kemp, A. D. (1969) J. Chem. Soc. C 1787.
- 7. Takei, S., Miyajima, S. and Ono, M. (1932) Ber. 65, 288.